Relationships for Ionization Reactions at High Pressures

equation (12); the dashed curves are based on the truncated equation of Lown *et al.*¹⁰ using their estimated values of ΔV_0 and $\Delta \kappa_0$, and the dotted curve for water is given by Owen and Brinkley's equation (5), using the value of $\Delta \kappa_0$ measured by Kearns.⁴

Table 2. Relative molal ionization constants at high pressures

Experim	ental valu	tes of $K_{\rm P}/K$	are in equ	ordinary lation (12	type. Ca 2) and are	llculated in <i>italics</i>	values of	$K_{\rm P}/K_0$ v	vere de	rived	from	
$K_{\rm P}/K_0$ values at pressures P (kbar)												
1	2	3	4	5	6	7	8	9	10	11	12	
		Acetic	Acid in	Water at	25°C; Δ	$V_0 - 11.$	7 cm ³ mol	-1	_		-	
1.546^{A}	2.201	3.047										
$1 \cdot 541$	2.219	3.033										
		Self-ion	ization o	f Water a	t 25°C;	$\Delta V_0 = 21$	$\cdot 4 \text{ cm}^3 \text{ m}^3$	ol^{-1}				
2·19 ^B	4.18	7.25	12.0	18.6	27.6	38.9	51.3					
$2 \cdot 17$	4.20	7.38	12.0	18.5	27.0	37.8	51 · 1					
	A	mmonium	Hydroxi	de in Wa	ter at 45°	C; ΔV_0	-29.0 cm	³ mol ⁻	1			
	6.02 ^c		26.2		75.2		174		320		494	
	6.38		24.8		69.6		157		304		522	

^A Mean values from the results of Hamann and Strauss,¹² Ellis and Anderson¹³ and Lown *et al.*¹⁰ ^B From the measurements of Linov and Kryukov.⁶

^c From the measurements of Hamann and Strauss.¹² The values listed here differ slightly from those originally published. A correction has been applied for changes in the cell constant of the conductance cell caused by the high pressure phase transitions^{14–16} of Teflon.

Fig. 2. A logarithmic plot of the ionization constant of ammonium hydroxide in water at high pressures, at 45° C, and of water at 25° C. The solid curves are given by equation (12), the dashed curves by the equation of Lown *et al.*¹⁷ and the dotted curve by Owen and Brinkley's equation (5).

El'yanov's analysis (see Tables 2 and 3 of ref.⁹) shows that the function Φ is effectively independent of the temperature for ionization reactions in water—at least between 18 and 75°C. It follows that it should be possible to apply equation (12)

949

over a range of temperatures using a constant value of $b = 9 \cdot 2 \times 10^{-5} \text{ bar}^{-1}$. Table 3 and Fig. 3 show that it gives a good description of the ionization of acetic acid in water over the very wide range of temperatures from 25 to 225°C, at pressures between 0 and 3 kbar.¹⁷ At 225°C, water has a dielectric constant of only 30 to 40 in that range of pressures,¹⁸ so that it is quite a different medium from ordinary water at 25°C. Nevertheless, the formula still applies, with the same value of b.

Table 3. Relative molal ionization constants of acetic acid in water at high pressures Experimental values of K_P/K_0 are in ordinary type and calculated values are in *italics*

Temp.	ΔV_0	$K_{\rm P}/K_0$ values at pressures P (kbar)							
(°C)	$(cm^3 mol^{-1})$	0.4	1.0	1.4	2.0	2.4	3.0		
25	-11.35	1·19 ^A	1.52	1.76	2.16	2.47	2.98		
		1 · 19 ^B	1.52	1.77	2.17	2.46	2.93		
225	-36.45	1.41 ^A	2.29	3.00	4.34	5.43	7.76		
		1.40 ^B	2.24	2.98	4.43	5.64	7.92		

^A Experimental values of Lown, D. A., Thirsk, H. R., and Lord Wynne-Jones, *Trans. Faraday Soc.*, 1970, **66**, 51.

^B Values calculated from formula (12), with $b = 9 \cdot 2 \times 10^{-5} \text{ bar}^{-1}$.

The Pressure Dependence of ΔV

Substitution of (12) into (1) and (3) gives the following relationships

$$\Delta V_{\rm P} = \Delta V_0 / (1 + bP)^2 = W \Delta V_0 \tag{13}$$

$$\Delta \kappa_{\rm P} = 2b\Delta V_0 / (1+bP)^3 = X\Delta V_0 \tag{14}$$

which describe the pressure dependences of ΔV and $\Delta \kappa$. When P = 0, (14) reduces to $\Delta \kappa_0 = 2b\Delta V_0 = (1.84 \times 10^{-4} \text{ bar}^{-1}) \times \Delta V_0$, which is fairly close to the proportionality observed by Lown *et al.* (see the discussion of equation (7)).

¹⁷ Lown, D. A., Thirsk, H. R., and Lord Wynne-Jones, *Trans. Faraday Soc.*, 1970, 66, 51.
¹⁸ Tödheide, K., in 'Water—A Comprehensive Treatise' (Ed. F. Franks) Vol. 1, p. 492 (Plenum Press: New York 1972).